物竞编号 | 14S5 |
---|---|
分子式 | C2H4O |
分子量 | 44 |
标签 | 氧化乙烯, Epoxyethane, 1,2-Epoxyethane, Oxirane, Anprolene, 脂肪族醇类、醚类及其衍生物 |
CAS号:75-21-8
MDL号:MFCD00014482
EINECS号:200-849-9
RTECS号:KX2450000
BRN号:102378
PubChem号:24845617
1.性状:无色气体,有特征气味。[14]
2.熔点(℃):-111.7[15]
3.沸点(℃):10.7[16]
4.相对密度(水=1):0.87(20℃)[17]
5.相对蒸气密度(空气=1):1.52[18]
6.饱和蒸气压(kPa):146(20℃)[19]
7.燃烧热(kJ/mol):-306.1[20]
8.临界温度(℃):195.8[21]
9.临界压力(MPa):7.19[22]
10.辛醇/水分配系数:-0.30[23]
11.闪点(℃):-29(OC)[24]
12.引燃温度(℃):429[25]
13.爆炸上限(%):100[26]
14.爆炸下限(%):3.0[27]
15.溶解性:易溶于水,多数有机溶剂。[28]
16.黏度(mPa·s,0ºC):0.31
17.黏度(mPa·s,10ºC):0.28
18.蒸发热(KJ/kg):569.87
19.生成热(KJ/kg,蒸气):71.13
20.生成热(KJ/kg,液体):97.49
21.熔化热(KJ/kg):5.17
22.比热容(KJ/(kg·K),25ºC):1.96
23.热导率(W/(m·K),蒸气,25ºC):0.1239×10-3
24.体膨胀系数(K-1,20ºC):0.00147
25.体膨胀系数(K-1,55ºC):0.00161
26.常温折射率(n20):1.35797
27.相对密度(20℃,4℃):0.882810
28.临界密度(g·cm-3):0.231
29.临界体积(cm3·mol-1):142
30.临界压缩因子:0.262
31.偏心因子:0.198
32.溶度参数(J·cm-3)0.5:21.624
33.van der Waals面积(cm2·mol-1):3.300×109
34.van der Waals体积(cm3·mol-1):24.160
35.气相标准燃烧热(焓)(kJ·mol-1):-1306.04
36.气相标准声称热(焓)( kJ·mol-1) :-52.63
37.气相标准熵(J·mol-1·K-1) :242.99
38.气相标准生成自由能( kJ·mol-1):-13.2
39.气相标准热熔(J·mol-1·K-1):47.86
40.液相标准燃烧热(焓)(kJ·mol-1):-1281.10
41.液相标准声称热(焓)( kJ·mol-1):-77.57
42.液相标准熵(J·mol-1·K-1) :153.80
43.液相标准生成自由能( kJ·mol-1):-11.59
44.液相标准热熔(J·mol-1·K-1):89.90
1、急性毒性:大白鼠口服:LD50:300mg/Kg;几内亚猪 口服 LD50:300mg/Kg;人吸入环氧乙烷含量100~200mg/L的空气,死亡。
2、慢性毒性:几内亚猪 吸入 7hr/天,每周5天,连续几个月,耐药量为10mg/Kg左右;小白鼠和大白鼠 同样条件下,耐药量为50mg/Kg。
3、眼刺激性:兔 18mg/6hr 中度。
4、环氧乙烷的毒性为乙二醇的27倍,与氨的毒性相仿。在体内形成甲醛、乙二醇和乙二酸,对中枢神经系统起麻醉作用,对粘膜有刺激作用,对细胞原浆有毒害作用。
5、液体对眼睛会造成严重伤害,其蒸气对眼、鼻和咽喉有刺激性,对神经系统产生抑制作用。工作场所最高容许浓度5mg/m3。人吸入180mg/m3出现有害症状,450mg/m时60分钟会产生严重中毒。
6.急性毒性[29]
LD50:72mg/kg(大鼠经口)
LC50:800ppm(大鼠吸入,4h)
7.刺激性[30]
家兔经眼:18mg(6h),中度刺激。
人经皮:1%(7s),皮肤刺激。
8.亚急性与慢性毒性[31] 动物反复吸入0.63~0.72g/m3蒸气,可见有生长抑制或体重减轻、流涕、腹泻及呼吸道刺激症状。动物死亡原因,大多由于原发性肺刺激,或由于继发感染。
9.致突变性[32] 微生物致突变试验:鼠伤寒沙门菌20ppm。微生物致突变:酿酒酵母菌25mmol/L。姐妹染色单体交换:人淋巴细胞4%。体细胞突变:人成纤维细胞5mmol/L。程序外DNA合成:人白细胞4mmol/L。DNA损伤:人成纤维细胞5mmol/L。
10.致畸性[33] 大鼠孕后7~16d吸入最低中毒剂量(TCLo)150ppm(7h),致颅面部(包括鼻、舌)发育畸形。小鼠腹腔内给予最低中毒剂量(TDLo)125mg/kg,致眼、耳发育畸形。
11.致癌性[34] IARC致癌性评论:G1,确认人类致癌物。
12.其他[35] 大鼠吸入最低中毒浓度(TCLo):3600μg/m3(24h)(60d,雄性),影响睾丸、附睾和输精管。致植入前的死亡率升高。大鼠吸入最低中毒浓度(TCLo):150ppm(7h)(孕7~16d用药),致胚胎毒性,致颅面部发育异常,致肌肉骨骼发育异常。
TCLo:12500ppm(人吸入,10s);TCLo:500ppm(女人吸入,2min)
1.生态毒性[36] LC50:90mg/L(24h)(金鱼)
2.生物降解性[37]
好氧生物降解(h):672~4320
厌氧生物降解(h):2688~17280
3.非生物降解性[38]
空气中光氧化半衰期(h):917~9167
一级水解半衰期(h):285
4.其他有害作用[39] 该物质对环境有危害,应注意对大气的污染。
1、摩尔折射率:10.82
2、摩尔体积(cm3/mol):44.2
3、等张比容(90.2K):104.7
4、表面张力(dyne/cm):31.2
5、介电常数:无可用
6、偶极距(10-24cm3):无可用
7、极化率:4.29
1.疏水参数计算参考值(XlogP):-0.1
2.氢键供体数量:0
3.氢键受体数量:1
4.可旋转化学键数量:0
5.互变异构体数量:无
6.拓扑分子极性表面积12.5
7.重原子数量:3
8.表面电荷:0
9.复杂度:10.3
10.同位素原子数量:0
11.确定原子立构中心数量:0
12.不确定原子立构中心数量:0
13.确定化学键立构中心数量:0
14.不确定化学键立构中心数量:0
15.共价键单元数量:1
1.环氧乙烷液体本身是一种良好的有机溶剂。环氧乙烷易爆炸,当空气中含有3%~80%环氧乙烷时,则形成爆炸性混合气体,遇明火时发生燃烧或爆炸。若将环氧乙烷液体和水以1:22以上比例相混合,则不再有易燃(爆)性。环氧乙烷与镁、银及其化合物相接触时可形成乙炔,也可发生爆炸。为了安全使用环氧乙烷,可用淬火剂进行稀释。
2.环氧乙烷可以发生聚合,但一般情况下聚合作用是缓慢的,且主要是在液体状态时发生聚合。在聚合过程中释放一些能量。这种聚合作用可因某些催化剂的存在而加速。环氧乙烷的聚合物可为黄色油状物或树胶样固体。易溶于水和有机溶剂,能还原硝酸银。化学性质活泼、易发生开环反应,能与许多化合物进行加成反应,与水反应生成乙二醇,与醇类反应生成乙二醇单醚,与苯酚反应生成苯氧基乙醇,与无机酸如硝酸反应生成乙二醇二硝酸酯。环氧乙烷能发生聚合反应生成聚乙二醇。
3.环氧乙烷在体内形成甲醛、乙二醇和乙二酸。对中枢神经系统起麻醉作用,并刺激黏膜,毒害细胞原浆。小鼠吸入LC501.5mg/L,大鼠吸入LC502.63mg/L.。人体吸入高浓度蒸气后,即呈麻醉症状,引起恶心、呕吐。中毒后应立即撤离现场,进行吸氧、人工呼吸等抢救处理。皮肤污染者,用大量清水或3%硼酸溶液冲洗15分钟以上,保暖并送医院诊治。
4.稳定性[40] 稳定
5.禁配物[41] 酸类、碱、醇类、氨、铜
6.避免接触的条件[42] 受热,光照
7.聚合危害[43] 聚合
1.储存注意事项[44] 储存于阴凉、通风的易燃气体专用库房。远离火种、热源。避免光照。库温不宜超过30℃。应与酸类、碱类、醇类、食用beplay体育首页 分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备。
2.设备应密封,防止跑、冒、滴、漏。加强通风设施。操作人员应穿戴防护用具。高浓度环境中更应戴活性炭口罩或压缩空气、压缩厌氧呼吸面具。装置附近应备有水龙头及淋浴设备。空气中最高容许浓度0.001g/m3。
(1)氯醇法
以乙烯为原料,先经次氯酸化制得氯乙醇,然后用碱环化而得。具体工艺是:将乙烯和氯气通入水中生成氯乙醇,该反应在耐腐蚀的反应器中进行,氯气、水和乙烯并流通入反应器,在20~50℃和0.2~0.3 MPa下反应,生成2-氯乙醇水溶液,含量一般在6%~7%以下。然后用碱(通常为石灰乳)与氯乙醇反应,进行环合。反应温度控制在100℃左右,生成的环氧乙烷尽快离开反应区,从反应器上部的冷凝口流出,然后汽液分离,蒸馏可得成品。
工艺流程:1、乙烯的次氯酸化反应在温度27-43℃,压力0.2-0.Mpa下进行。所用反应器为塔式反应器。从塔底加入水,在稍上部加入氯气,在再上部加入乙烯。水、次氯酸、乙烯并流向上通过反应器进行反应,得到氯乙醇含量为4%-5%(质量)的反应液;反应副产物为二氯乙烷、二氯乙基醚等。从反应器顶部逸出的气体进入冷凝,不凝气体大部分为未反应的乙烯,除少量放空外,大部分经水洗、碱洗后返回反应循环使用。2、皂化 上述冷凝液与反应器中溢出的反应液一起送入皂化水解塔。水解塔温度低于100℃,压力为常压;加入过量10%-20%的石灰乳,氯乙醇在皂化塔中水解为环氧乙烷后,与其他氯化副产物一起从塔顶蒸出;然后依次经初馏塔和精馏塔脱去低沸物和高沸物后而得环氧乙烷产品。消耗定额(kg/t):乙烯800,氯气2000,石灰1600;同时副产氯化钙3200,二氯乙烷100-150。
(2)氧化法
由乙烯与空气或氧气通过银催化剂于200~300℃和1~3 MPa压力下在气相直接氧化制得。
氧化法催化剂一般含银10%~30%,有效助催化剂是碱金属和碱土金属(如铁、钙等)。常用的载体为α-氧化铝或碳化硅,反应后生成氧化气体,于吸收塔内用水吸收,未反应的乙烯循环回反应器,吸收液经解吸蒸馏而得产品。
工艺流程:新鲜乙烯、空气和循环气体混合后在换热器中与反应器中出来的气体换热;然后加入(2-3)×10-6的二氯乙烷,使催化剂活性降低,同是提高其选择性。该混合气体随后进反应器反应;反应后的气体经冷却后进第一水吸收塔,用水吸收其中的环氧乙烷;未吸收的气体大部分返回主反应器循环使用,少量(10%-20%)经补加空气,并预热后进副反应器反应;由副反应器出来的反应气体经冷却后进第二水吸收塔。第一第二吸收塔;塔顶出来的解吸气体进净化塔,从塔底除去残佘的水;塔顶产物再经初馏塔、精馏塔分别除去轻组分和重组分后,得到环氧乙烷产品。消耗定额:乙烯0.9-1.0t/t,二氯乙烷18kg/t,催化剂18kg,冷却水19t/t,空气6000-7000平方立米,蒸汽0.09t/t,电800-1500KW·h/t。
精制方法:主要杂质是醛类(如甲醛、乙醛),通过蒸馏装置可使含醛量不超过54mg/m3。其他精制方法有分子筛吸附法,2-乙基己酸处理法和甲醇蒸取蒸馏法等。
1.用作有机化工原料及溶剂主要用于生产乙二醇、乙醇胺及非离子表面活性剂。
2.环氧乙烷有杀菌作用,对金属不腐蚀,无残留气味,因此可用材料的气体杀菌剂。通常采用环氧乙烷-二氧化碳(两者之比为90:10)或环氧乙烷-二氯二氟甲烷的混合物,主要用于医院和精密仪器的消毒。环氧乙烷用熏蒸剂常用于粮食、食物的保藏。例如,干蛋粉的贮藏中常因受细菌的作用而分解,用环氧乙烷熏蒸处理,可防止变质,而蛋粉的化学成分,包括氨基酸等都不受影响。
3.环氧乙烷易与酸作用,因此可作为抗酸剂添加于某些物质中,从而降低这些物质的酸度或者使用其长期不产生酸性。例如,在生产氯化丁基橡胶时,异丁烯与异戊二烯共聚物的溶液在氯化前如果加入环氧乙烷,则成品即可完全不用碱洗和水洗。
4.环氧乙烷自动分解时能产生世大能量,可以作为火箭和喷气推进器的动力,一般是采用硝基甲烷和环氧乙烷的混合物(60:40~95:5)。这种混合燃料燃烧性能好,凝固点低,性质比较稳定,不易引爆。
5.环氧乙烷作为乙烯工业衍生物仅次于聚乙烯,为第二位的重要产品。其重要性主要是以其为原料生产的系列产品。由环氧乙烷衍生的下游产品的种类远比各种乙烯衍生物多。
6.主要用于制造其他各种溶剂(如溶纤剂等),稀释剂,非离子型表面活性剂,合成洗涤剂、抗冻剂、消毒剂、增韧剂和增塑剂等。与纤维素发生羟乙基化可合成得水溶性树脂(其环氧乙烷含量约75%)。还可用作熏蒸剂、涂料增稠剂、乳化剂、胶黏剂和纸张上浆剂等。
7.环氧乙烷及其衍生物能与亲核试剂反应,开环后形成2-羟乙基类化合物,一次增加两个碳原子。能与环氧乙烷反应的试剂很多,包括含碳亲核试剂、水、醇、胺等。
与有机金属的开环加成反应 在强碱的作用下,烯丙基化合物、炔等均能形成碳负离子,然后该碳负离子与环氧乙烷反应,产物为含有羟基的化合物[1~3]。如在烷基锂作用下,3-甲基-1-丁炔与环氧乙烷反应得到β-羟基炔烃 (式1)[4]。
与有机锂试剂一样,格氏试剂也容易与环氧乙烷发生开环加成反应 (式2)[5]。
当反应体系中存在手性配体或手性催化剂时,在有机金属试剂的作用下,环氧乙烷能够发生不对称开环加成反应 (式3)[6]。
与酯反应形成内酯 酯用三甲基氯硅烷处理后的烯醇化物与过量的环氧乙烷反应,得到内酯化合物,该反应经过开环加成得到醇羟基中间体 (式4)[7,8]。
与胺的反应 含杂原子的化合物与环氧乙烷加成,得到2-取代乙醇衍生物 (式5)[9,10]。
扩环反应 环氧化物(如多聚甲醛)可与环氧乙烷发生扩环反应 (式6)[11]。
此外,环氧乙烷也可形成多聚体,作为高分子化合物常用在高分子化学与纳米科学中[12,13]。
8.用于制造乙二醇、表面活性剂、洗涤剂、增塑剂以及树脂等。[45]
危险运输编码:UN1040 2.1
危险品标志:很易燃 有毒
安全标识:S1 S16 S23 S45 S53 S24/25 S36/S37
危险标识:R1 R11 R12 R21 R23 R45 R46 R23/24/25 R36/37/38 R39/23/24/25
1. Chumachenko, N.; Sampson, P.; Hunter, A. D.; Zeller, M. Org. Lett., 2005, 7, 3203. 2. Codesido, E. M.; Castedo, L.; Granja, J. R. Org. Lett., 2001, 3, 1483. 3. Katritzky, A. R.; Yao, J.; Denisko, O. V. J. Org. Chem., 2000, 65, 8063. 4. Brummond, K. M.; Gao, D. Org. Lett., 2003, 5, 3491. 5. Gwaltney, S. L.; Sakata, S. T.; Shea, K. J. J. Org. Chem., 1996, 61, 7438. 6. Deng, X.; Mani, N. S. Tetrahedron: Asymmetry, 2005, 16, 661. 7. Maslak, V.; Matović, R.; Saičić, R. N. Tetrahedron, 2004, 60, 8957. 8. Maslak, V.; Matović, R.; Saičić, R. N. Tetrahedron Lett., 2002, 43, 5411. 9. Parker, L. L.; Lacy, S. M.; Farrugia, L. J.; Evans, C.; Robins, D. J.; ÓHare, C. C.; Hartley, J. A.; Jaffar, M.; Stratford, I. J. J. Med. Chem., 2004, 47, 5683. 10. Turgut, Y.; Hoşgören, H. Tetrahedron: Asymmetry, 2003, 14, 3815. 11. Yamasaki, N.; Nagahara, H.; Masamoto, J. Tetrahedron Lett., 2001, 42, 271. 12. Kao, H.-M.; Chen, C.-L. Angew. Chem., Int. Ed., 2004, 43, 980. 13. Li, J.; Ni, X.; Leong, K. Angew. Chem., Int. Ed., 2003, 42, 69. [1~13]参考书:现代有机bepaly tw <性质、制备和反应>;胡跃飞 付华 编著;化学工业出版社;ISBN 7-5025-8542-7 [14~45]参考书:危险beplay体育首页 安全技术全书.第一卷/张海峰主编.—2版.北京;化学工业出版社,2007.6 ISBN 978-7-122-00165-8
暂无